Supplementary Information

Opening twisted polymer chains for simultaneously high printability and
battery fast-charge
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Figure S1. Detailed ink preparation process with optical images of each mixing step for the (A)
M1, (B) M2, and (C) M3 inks.
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Figure S2. Rheological properties of M1 inks with solid contents from 50% to 65%: (A) viscosity
as a function of shear rate and (B) three-step thixotropy test.
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Figure S3. Digital images and printability of M1 inks with solid contents from 65% to 50%. The

scale bars are 5 mm in length.
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Figure S4. Rheological properties of M2 inks with solid contents from 50% to 60%: (A) viscosity

as a function of shear rate and (B) three-step thixotropy test.



Figure SS. Digital images and printability of M2 inks with solid contents from 60% to 50%. The

scale bars are 5 mm in length.
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Figure S6. Rheological properties of (A) T-inks and (B) U-inks. The solid content of these inks is
60%. Panel 1: viscosity as a function of shear rate; panel 2: stress as a function of shear rate; and
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panel 3: three-step thixotropy test (0.1, 200, and 0.1 s™* shear rates were set in three intervals, 0-90

s, 90-100 s, and 100-200 s).




Figure S7. Digital images and printability of (A) T-inks and (B) U-inks. The scale bars are 5 mm

in length.



Figure S8. Highlighted images of (A) carbon aggregates (purple) in the M2 electrode and (B) a
net-like structure (yellow) in a well-printed region of the M1 electrode, which results from the

twisted molecular chains.
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Figure S9. Long-term cycling performance of screen-printed M1, M2, and M3 electrodes at a
high rate of 6C. All cells were initially activated at 0.1 C and 0.5 C for three cycles.
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Figure S10. Electrodes screen printed on a bare Al substrate with a 300 mesh screen with pores
0.5 mm in diameter and 420 mesh screen with pores 0.3 mm in diameter. The scale bars are 5
mm in length.
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Figure S11. (A) SEM image and (B) size distribution of NMC 622 particles in this work.
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Figure S12. Molecular dynamics models: (A) NMC 622 geometric model. (B) Amorphous binder
chain model. (C) Super P particle model. (D) Schematic image of the distribution of different
regions in the simulation model. Red denotes NMC 622 particles, green indicates binder chains,
and lavender represents Super P particles. The two flat plates along the z-direction are marked in

cyan.
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Figure S13. Simulation schematics for the three experimental methods: (A) the M1 method, (B)
the M2 method, and (C) the M3 method.
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Figure S14. Radial distribution functions (RDFs) of inter-NMC 622 particles for the three methods
before shear is applied.
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Figure S15. Schematic for obtaining the viscosity of a rectangular duct.



Supporting Tables

Table S1. Details of the ink fabrication processes and a brief summary of the printability and
molecular chain conditions for a series of inks.

# . " molecular
Step 1 Step 2 Step 3 Step 4 Printability chains situation
1 Mixing the super P and Add the NMC 622 Add high solid qontent Bad Twisted
NMP binder solution
12 Mixing super P and half Add the NMC 622 Add_the other r_1alf of Bad Twisted
of binder solution binder solution
- . . Add the other half of
1.3 | Pre-mixing the powders Add NMP Add half of high solid high solid content Bad Twisted
for 1 h at 500 rpm content binder solution f X
binder solution
Mixing the super P and add the other 1/2 of Add high solid content .
14 1/2 NMP NMP Add NMC 622 binder solution Bad Twisted
2 Mixing powders by Add binder solution Bad Twisted
hand milling
Mixing Super P and Add high solid content Add the other part of .
3 part of NMP Add NMC 622 binder solution NMP Good Untwisted
32 | Mbdng powders by Add NMP Add high solid content | 44 \\p step by step | Good Untwisted
hand milling binder solution
Pre-mixing the powders Add high solid content Add the other part of .
33 1" for 1 hat500 rpm Add part of NMP binder solution NMP Good Untwisted

Table S2. Coarse-grained potential parameters for all particles in the simulation with their
corresponding physical values.

Parameters Simulation (LJ unit) Physical
Simulation box size (Lx X Ly X L;) 40 x 120 x 40 10 x 30 x 10 um
Super P (mass/volume fraction) 2.4%/2.06% 2.4%/2.06%
NMC622 (mass/volume fraction) 56.40%/33.55% 56.40%/33.55%
Binder (mass/volume fraction) 1.20%/1.10% 1.20%/1.10%
NMP solvent (mass/volume fraction) 40%/63.29% 40%/63.29%
Energy scale (ksT) 1.0519 x 10 41418 x 1022 N m
NMC622 diameter (D) 14.00 3.500 x 10® m
Chain length of binder (l,) 87.6 2.190 x 10°m
Equilibrium bond length of binder (lo) 0.60 1.500 x 10" m
Viscosity of fluid (1) 0.263 1.890 x 10 Pa's
Sphere area constant (Ka) 7.4921 x 107? 472 x10°N m?
Sphere shear modulus (u) 1.00 6.30 x 10* N m!
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Sphere local area constant (kq) 3.6667 2.31 x 10N m?
Sphere volume constant (ky) 0.9881 2.490 x 103N m
Sphere bending constant (kp) 0.1270 5.000 x 108 N'm

Polymer stretching constant (ksp) 1.00 6.30 x 10N m!
Polymer bending constant (kp) 5.259 x 10* 2.0709 x 10 N m*
Morse energy well width (B) 0.96 3.84 x 105 m?

Morse energy (Do) 3.160 x 10°® 1.2425 x 102> N m*

Morse equilibrium distance (ro) 2.00 5.000 x 107" m

Morse cutoff (rc) 6.00 1.500 x 105 m
LJ depth of well (€) 1.050 x 10 414x 1022 Nm

LJ zero potential distance (o) 2.00 5.000 x 107" m
2.24 5.600 x 10" m

LJ cutoff distance (rij)
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